ETHERIFICATION, OXIDATION, ALKYLATION AND SKELETAL TRANSFORMATIONS OF ECDYSTEROIDS
Abstract
Phytoecdysteroids (PEs) are naturally occurring polyhydroxylated compounds with a structure similar to that of insect molting hormone and the plant hormone brassinosteroids. PEs have a four-ringed skeleton composed of 27, 28, 29, or 30 carbon atoms (derived from plant sterols). The carbon skeleton of ecdysteroid is known as cyclopentanoperhydrophenanthrene and has a β-sidechain on C-17. ECs are polar steroids, and their solubility is identical to that of sugar molecules; thus, they are lipophilic and soluble in aqueous mediums. However, mammalian steroidal hormones are relatively non-polar and have variable structures.
Downloads
References
Butenandt.A.; Karlson.P. Über die isolierung eines metamorphose-hormons der insekten in kristallisierter form. Z. Naturforsch. B 1954, 9, 389–391.
Huber.R.; Hoppe.W. Zur chemie des ecdysons, VII: Die kristall- und molekülstrukturanalyse des insektenverpuppungshormons ecdyson mit der automatisierten faltmolekülmethode. Chem. Ber. 1965, 98, 2403–2424.
Dinan.L. Phytoecdysteroids: Biological aspects. Phytochemistry 2001, 57, 325–339.
Dinan.L.; Harmatha.J.; Volodin.V.; Lafont.R. Phytoecdysteroids: Diversity, biosynthesis and distribution. In Ecdysone: Structures and Functions; Smagghe, G., Ed.; Springer: Dordrecht, The Netherland, 2009; pp. 3–45.
Hikino, H.; Takemoto, T. Ecdysones of plant origin. In Invertebrate Endocrinology and Hormonal Heterophylly; Burdette, W.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 185–203.
Lafont, F.; Tran Van Nhieu, G.; Hanada, K.; Sansonetti, P.; van der Goot, F.G. Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J. 2002, 21, 4449–4457.
Yusupova, U.Y.; Ramazonov, N.S.; Syrov, V.N.; Sagdullaev, S.S. Phytoecdysteroids. In Phytoecdysteroids: Properties, Biological Activity and Applications; Springer: Singapore, 2022; pp. 1–48.
Das, N.; Mishra, S.K.; Bishayee, A.; Ali, E.S.; Bishayee, A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm. Sin. B 2021, 11, 1740–1766.
Grebenok, R.J.; Adler, J.H. Ecdysteroid biosynthesis during the ontogeny of spinach leaves. Phytochemistry 1993, 33, 341–347.
Grebenok, R.J.; Venkatachari, S.; Adler, J.H. Biosynthesis of ecdysone and ecdysone phosphates in spinach. Phytochemistry 1994, 36, 1399–1408.
Gilbert, L.I.; Rybczynski, R.; Warren, J.T. Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol. 2002, 47, 883–916.
Guo, D.-a.; Venkatramesh, M.; Nes, W.D. Developmental regulation of sterol biosynthesis in Zea mays. Lipids 1995, 30, 203–219.
Bajguz, A.; Bąkała, I.; Talarek, M. Ecdysteroids in plants and their pharmacological effects in vertebrates and humans. In Studies in Natural Products Chemistry; Atta-ur-Rahman, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 45, pp. 121–145.
Dinan, L. The Karlson Lecture. Phytoecdysteroids: What use are they? Arch. Insect Biochem. Physiol. 2009, 72, 126–141.
Savchenko, R.G.; Veskina, N.A.; Odinokov, V.N.; Benkovskaya, G.V.; Parfenova, L.V. Ecdysteroids: Isolation, chemical transformations, and biological activity. Phytochem. Rev. 2022, 1–42.
Balázs, A.; Hunyadi, A.; Csábi, J.; Jedlinszki, N.; Martins, A.; Simon, A.; Tóth, G. 1H and 13C NMR investigation of 20-hydroxyecdysone dioxolane derivatives, a novel group of MDR modulator agents. Magn. Reson. Chem. 2013, 51, 830–836.
Martins, A.; Csábi, J.; Balázs, A.; Kitka, D.; Amaral, L.; Molnár, J.; Simon, A.; Tóth, G.; Hunyadi, A. Synthesis and structure-activity relationships of novel ecdysteroid dioxolanes as MDR modulators in cancer. Molecules 2013, 18, 15255–15275.
Balázs, A.; Hunyadi, A.; Csábi, J.; Jedlinszki, N.; Martins, A.; Simon, A.; Tóth, G. 1H and 13C NMR investigation of 20-hydroxyecdysone dioxolane derivatives, a novel group of MDR modulator agents. Magn. Reson. Chem. 2013, 51, 830–836.
Hunyadi, A.; Csábi, J.; Martins, A.; Molnár, J.; Balázs, A.; Tóth, G. Backstabbing P-gp: Side-chain cleaved ecdysteroid 2,3-dioxolanes hyper-sensitize MDR cancer cells to doxorubicin without efflux inhibition. Molecules 2017, 22, 199.
Zhang, D.; Zhang, M.; Ding, B.; Wang, X.-L.; Qiu, Z.-Y.; Qin, Y. Synthesis of a novel phosphate analog of 20-hydroxylecdysone with potent hypoglycemic activity. J. Asian Nat. Prod. Res. 2011, 13, 297–303.
Martins, A.; Sipos, P.; Dér, K.; Csábi, J.; Miklos, W.; Berger, W.; Zalatnai, A.; Amaral, L.; Molnár, J.; Szabó-Révész, P.; et al. Ecdysteroids sensitize MDR and non-MDR cancer cell lines to doxorubicin, paclitaxel, and vincristine but tend to protect them from cisplatin. BioMed Res. Int. 2015, 2015, 895360.
Vágvölgyi, M.; Bélteky, P.; Bogdán, D.; Nové, M.; Spengler, G.; Latif, A.D.; Zupkó, I.; Gáti, T.; Tóth, G.; Kónya, Z.; et al. Squalenoylated nanoparticle pro-drugs of adjuvant antitumor 11α-hydroxyecdysteroid 2,3-acetonides act as cytoprotective agents against doxorubicin and paclitaxel. Front. Pharmacol. 2020, 11, 552088.
Bortolozzi, R.; Luraghi, A.; Mattiuzzo, E.; Sacchetti, A.; Silvani, A.; Viola, G. Ecdysteroid derivatives that reverse P-glycoprotein-mediated drug resistance. J. Nat. Prod. 2020, 83, 2434–2446.
Savchenko, R.G.; Kostyleva, S.A.; Kachala, V.V.; Khalilov, L.M.; Odinokov, V.N. Hydroxylation and epimerization of ecdysteroids in alkaline media: Stereoselective synthesis of 9α-hydroxy-5α-ecdysteroids. Steroids 2014, 88, 101–105.
Gáti, T.; Simon, A.; Hunyadi, A.; Csábi, J.; Kele, Z.; Tóth, G. New ring-rearranged metabolite of 20-hydroxyecdysone obtained by base-catalyzed auto-oxidation. Magn. Reson. Chem. 2015, 54, 391–395.
Issaadi, H.M.; Csábi, J.; Hsieh, T.-J.; Gáti, T.; Tóth, G.; Hunyadi, A. Side-chain cleaved phytoecdysteroid metabolites as activators of protein kinase B. Bioorg. Chem. 2019, 82, 405–413.
Shafikov, R.V.; Urazaeva, Y.R.; Afon’kina, S.R.; Savchenko, R.G.; Khalilov, L.M.; Odinokov, V.N. 20-hydroxyecdysone oximes and their rearrangement into lactams. Russ. J. Org. Chem. 2009, 45, 1456–1463.
Vágvölgyi, M.; Martins, A.; Kulmány, Á.; Zupkó, I.; Gáti, T.; Simon, A.; Tóth, G.; Hunyadi, A. Nitrogen-containing ecdysteroid derivatives vs. multi-drug resistance in cancer: Preparation and antitumor activity of oximes, oxime ethers and a lactam. Eur. J. Med. Chem. 2018, 144, 730–739.
Savchenko, R.G.; Kostyleva, S.A.; Meshcheryakova, E.S.; Khalilov, L.M.; Parfenova, L.V.; Odinokov, V.N. Synthesis of novel α-aminoecdysteroids via regio- and stereoselective oximation/hydrogenation of 20-hydroxyecdysone derivatives. Can. J. Chem. 2017, 95, 130–133.
Galyautdinov, I.V.; Khairullina, Z.R.; Sametov, V.P.; Muslimov, Z.S.; Khalilov, L.M.; Odinokov, V.N. 7α-Alkylation and 7,7-bis-alkylation of 20-hydroxyecdysone with propargyl bromide in a lithium–ammonia solution and catalytic reductive spirocyclization of 7,7-bis(2-propyn-1-yl)-14-deoxy-Δ8(14)-20-hydroxyecdysone. Steroids 2016, 107, 121–127.
Galyautdinov, I.V.; Khairullina, Z.R.; Zaripova, E.R.; Sametov, V.P.; Mescheryakova, E.S.; Muslimov, Z.S.; Mozgovoi, O.S.; Khalilov, L.M.; Odinokov, V.N. Stereospecific 7α-alkylation of 20-hydroxyecdysone in a lithium–ammonia solution. Steroids 2015, 98, 122–125.
Galyautdinov, I.V.; Sadretdinova, Z.R.; Mozgovoi, O.S.; Gibadullina, G.G.; Khalilov, L.M.; Muslimov, Z.S.; Odinokov, V.N. 7α-alkylation, 7,7-bisalkylation, and reduction of the 20-oxo group of poststerone in reactions with alkyl halides in lithium–ammonia solution. Russ. J. Org. Chem. 2017, 53, 109–117.
Canonica, L.; Danieli, B.; Lesma, G.; Palmisano, G.; Mugnoli, A. Fe(II)-induced fragmentation reaction of γ-hydroperoxy-α,β-enones. Part 1. Synthesis of 13(14→8)-abeo-steroids. Helv. Chim. Acta 1987, 70, 701–716.
Hunyadi, A.; Danko, B.; Boni, M.; Dinache, A.; Alexandru, T.; Nastasa, V.; Andrei, I.; Pascu, M.L.; Amaral, L. Rapid, laser-induced conversion of 20-hydroxyecdysone and its diacetonide-Experimental set-up of a system for photochemical transformation of bioactive substances. Anticancer Res. 2012, 32, 1291–1297.
Lai, W.-C.; Dankó, B.; Csábi, J.; Kele, Z.; Chang, F.-R.; Pascu, M.L.; Gáti, T.; Simon, A.; Amaral, L.; Tóth, G.; et al. Rapid, laser-induced conversion of 20-hydroxyecdysone–A follow-up study on the products obtained. Steroids 2014, 89, 56–62.
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason. Sonochem. 2017, 35, 1–14.
Savchenko, R.G.; Mescheryakova, E.S.; Bikmukhametov, K.S.; Tulyabaev, A.R.; Parfenova, L.V.; Khalilov, L.M. Hydroxy derivatives of poststerone and Its nontrivial 13(14→8)-abeo-analogues: Synthesis, crystal packing, and intermolecular hydrogen bonds. J. Mol. Struct. 2021, 1227, 129509.
Lafont, R.; Kaouadji, N.; Morgan, E.D.; Wilson, I.D. Selectivity in the high-performance liquid-chromatography of ecdysteroids. J. Chromatogr. A 1994, 658, 55–67.
Minli, Z.; Stout, M.J.; Kubo, I. Isolation of ecdysteroids from Vitex strickeri using RLCC and recycling HPLC. Phytochemistry 1992, 31, 247-250.
Ikekawa, N.; Ikeda, T.; Mizuno, T.; Ohnishi, E.; Sakurai, S. Isolation of a new ecdysteroid, 2,22-dideoxy-20-hydroxyecdysone, from the ovaries of the silkworm Bombyx mori. J. Chem. Soc. Chem. Comm. 1980, 448, 448–449.
Yang, L.; Jiang, H.; Yan, M.-L.; Xing, X.-D.; Zhang, Y.-Y.; Wei, N.; Yang, B.-Y.; Wang, Q.-H.; Kuang, H.-X. A new phytoecdysteroid from the roots of Achyranthes bidentata Bl. Nat. Prod. Res. 2016, 31, 1073–1079.
Saleem, M.; Musaddiq, S.; Riaz, N.; Zubair, M.; Ashraf, M.; Nasar, R.; Jabbar, A. Ecdysteroids from the flowers of Aerva javanica. Steroids 2013, 78, 1098–1102.
Zhang, Z.-Y.; Yang, W.-Q.; Fan, C.-L.; Zhao, H.-N.; Huang, X.-J.; Wang, Y.; Ye, W.-C. New ecdysteroid and ecdysteroid glycosides from the roots of Serratula chinensis. J. Asian Nat. Prod. Res. 2017, 19, 208–214.
Hang, D.T.T.; Hang, N.T.M.; Anh, H.L.T.; Nhiem, N.X.; Hue, C.T.; Binh, P.T.; Dat, N.T.; Nam, N.H.; Yen, P.H.; Minh, C.V.; et al. 1H and 13C NMR assignments of new ecdysteroids from Callisia fragrans. Magn. Reson. Chem. 2015, 53, 379–382.
Yusupova, U.Y.; Ramazonov, N.S.; Syrov, V.N.; Sagdullaev, S.S. Spectral methods for studying phytoecdysteroids. In Phytoecdysteroids: Properties, Biological Activity and Applications; Springer: Singapore, 2022; pp. 49–66.