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Introduction 
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a square table is called a square matrix of order 2, here jia - its elements, 

22211211 a,avaa,a are its string elements, 22122111 a,avaa,a called column 

elements. The first index of jia  is the row number i, j represents the column 

number. For example, 
21a  located in row 2 and column 1. We call the following 

number the determinant of this matrix: 
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Likewise, 
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if we call a square table a square matrix of the 3rd order, 

we say the following number as its determinant: 
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(2) 

LITERATURE ANALYSIS AND METHODOLOGY 

Determinants (1) and (2) are also called 2nd-order and 3rd-order determinants, 

respectively. (2) the following diagram, called the “method of triangles”, can be 

used to calculate the determinant:

 
In each diagram, the connected elements are multiplied together, and then the 

results are added, 

a) sum in the diagram with a "+" sign, 

b) the sum in the diagram is taken with a "-" sign, and both results are added 

together. 

Properties: 

1. If all path elements of the determinant are replaced by column elements or 

vice versa, its value does not change: 
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2. If we replace two adjacent row (column) elements of the determinant 

accordingly, the value of the determinant changes to the opposite sign: 
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3. If any row (column) elements of the determinant have a common multiplier, 

then this multiplier can be removed from the determinant: 
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               a) (+)                                                                                      b) (-) 

1-rasm 
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4. If some row (column) elements of the determinant are proportional to other 

row (column) elements, then the value of the determinant is equal to zero: 

  0
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In particular, if 0 , the value of the determinant is equal to zero. 

5. If the row (column) elements of the determinant are in the form of the sum 

of two expressions, then the determinant can be written in the form of the sum of 

two determinants: 
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6. If we multiply the elements of a row (column) of the determinant by a 

number 0  and add them to other row (column) elements, the value of the 

determinant will not change: 

2221

1211

2121

1111

2221

1211

212221

111211

aa

aa

aa

aa

aa

aa

aaa

aaa













 

The above-mentioned properties are valid even when the determinant is of the 

third or higher order. 

DISCUSSION AND RESULTS 

We use the third-order determinant △ to introduce the following properties, 
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131211
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The second-order determinant formed by deleting the i-row and j-column of 

the given third-order determinant is called the minor of the  element jia and is 

denoted as jiM . 

For example, 
11a  is the minor of the element 

3332

2322

11
aa

aa
M 

. 
Likewise, 

12a  is the minor of the element 
3331

2321

12
aa

aa
M  is 

equal to and so on. 

The following expression   ji

ji

ji MA


 1  is called the algebraic complement of 

element jia . 
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Algebraic complement of element 11a  ,
2221

1222

11
aa

aa
A  - and the algebraic 

complement of 
12a  element 

3331

2321

12
aa

aa
A   is equal to and so on. 

If we add the elements of a row (column) of the determinant by multiplying 

their algebraic complements, then the sum is equal to the value of the determinant. 

For real, 
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It is not difficult to prove that the equations are correct. 
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If we multiply the elements of a row (column) of the determinant by 

multiplying the algebraic complements of the elements of the other row (column), 

then the sum is equal to zero. For example, 
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and so on. For real, 
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The above-mentioned properties are also valid for n-order determinants 

introduced below. 

 

 

Matching any   to the set {1, 2, …, n} of the first n natural numbers is called an 

n-ordered permutation. Any n-order   permutation can be written as: 
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 in particular, 
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 is called canonical 

placement. 
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If ji and if ji aa  , We say that the pair (i, j) in the permutation π forms an 

inversion. If the number of all inverse pairs  S  is even,   placement is even, if 

 S  is odd,   placement is called odd. 

An example. The following 









14532

42531
 determine whether the placement 

is even or odd. 

Solving. We record the given placement in canonical form: 











51342

54321


 
and count the number of inversions. Since the inverse pairs 

are  (1, 4), (2, 3), (2, 4), (3, 4),   4S , therefore, - is an even arrangement. 

Description. The following 
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 The n-order determinant of a square matrix is called the 

following number: 
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here the summation is performed over all n-order placements. 

To understand this definition, consider the case where n = 3. All 3-order 

placements are: 
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Calculating the number of inversions for each placement:     ,S,S 20 21  

  ,S 23        113 654   S,S,S  we make sure it is. Then by definition: 
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as a result, we created the previously presented formula for the 3rd-order 

determinant. 

CONCLUSION 
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Similarly to the above, it is possible to introduce an algebraic complement for 

the determinant of order n. Then all properties of 2nd and 3rd order determinants 

are valid for n-order determinants. In particular, 

 n...,,iAaAdet ki

n

k

ki 1
1




         (3) 

 n...,,kAaAdet ki

n

i

ki 1
1




         (4) 

where kiA  algebraic complements are determinants of order n – 1, therefore, 

formulas (3), (4) are also called the method of reducing the order of calculating the 

n-order determinant or spreading it by row and column elements. 

An example. Calculate: 

1613

3213

1210

0112







 

Solving. For example, we first add the elements of column 3 to column 2 and 

multiply by (-2) to column 1: 

179

311

134

1
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3211
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0100






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


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If we multiply the 3rd column by (-4) and 3 and add it to the 1st and 2nd 

columns, respectively: 

0
1013

1013
1

11013

31013

100










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